

18-Bit 250/670 kSPS PulSAR® Bipolar Programmable Inputs ADC

Preliminary Technical Data

AD7631/AD7634

FEATURES

Multiple pins/software programmable input ranges:

±10V, ±5V, 10V, 5V

iCMOS™ process technology

Pins or serial SPI input ranges/mode selection

Throughput:

670kSPS (AD7634) 250kSPS (AD7631)

INL: ± 1.75 LSB (7± ppm of full scale)

DNL: +2/-1 LSB

18-bit resolution with no missing codes

Dynamic range: 102.5 dB typical

SNR: 101 dB typical THD: -122 dB typical

5V internal reference: typical drift 7ppm/°C; TEMP output

No pipeline delay (SAR architecture)

Parallel (18, 16- or 8-bit bus) and serial 5 V/3.3 V interface

SPI®-/QSPI™-/MICROWIRE™-/DSP-compatible

Power dissipation: 190 mW @ 670kSPS 75 mW @ 250kSPS

Pb-free 48-lead LQFP and LFCSP (7x7mm) packages

Pin compatible with other PulSAR ADCs

APPLICATIONS

Process control
High speed data acquisition
Digital signal processing
Spectrum analysis
Instrumentation
Communications

GENERAL DESCRIPTION

The AD7631/AD7634 is an18-bit, charge redistribution successive approximation register (SAR) architecture analog-to-digital converter (ADC) with programmable input ranges and mode selection via a dedicated write only serial interface (or by hardware pin-strapping). The device is fabricated on ADI's patented *i*CMOS high voltage process. The device contains a high speed 18-bit sampling ADC, an internal conversion clock, an internal reference (and buffer), and both serial and parallel system interface ports. Power consumption is automatically scaled with throughput (AD7634 in Impulse mode), making it ideal for battery-powered applications. It is available in Pb-free, 48-lead packages with operation specified from -40° C to $+85^{\circ}$ C.

Rev. PrC

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

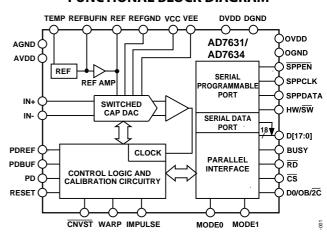


Figure 1.

E00 1

Table 1. PulSAR® Selection

Type/kSPS	100 to	500 to	650 to 1000	>1000
Pseudo Differential	AD7651, AD7660 AD7661	AD7650 AD7652 AD7664 AD7666	AD7653 AD7667	
True Bipolar	AD7610, AD7663	AD7665	AD7612, AD7671	
True Differential	AD7675	AD7676	AD7677	AD7621 AD7622 AD7623
18-Bit Multichannel/	AD7631 AD7678	AD7679	AD7634 AD7674	AD7641 AD7643
Simultaneous		AD7654 AD7655		

PRODUCT HIGHLIGHTS

- Programmable input range and mode selection.
 Dedicated write only serial port used for selecting input range and mode select (mode select AD7634 only).
- 2. Fast throughput
 The AD7634 is 670kSPS and the AD7631 is 250kSPS.
- Superior Linearity.
 No missing 18-bit code. +/- 1.75 LSB typical INL
- Internal Reference.
 V internal reference with a typical drift of ±7 ppm/°C and on-chip TEMP sensor.
- Serial or Parallel Interface.
 Versatile parallel (18, 16- or 8-bit bus) or 2-wire serial interface arrangement compatible with 3.3 V, or 5 V logic.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved.

Preliminary Technical Data

TABLE OF CONTENTS

Features	. 1
Applications	. 1
General Description	1
Functional Block Diagram	. 1
Product Highlights	1
Revision History	2
Specifications	3
Timing Specifications	6

Absolute Maximum Ratings	
ESD Caution	
Pin Configuration and Function Descriptions	
Terminology	13
Outline Dimensions	14
Ordering Guide	14

REVISION HISTORY

Preliminary Technical Data

SPECIFICATIONS

 $AVDD = DVDD = 5 \text{ V}; OVDD = 2.7 \text{ V} \text{ to } 5.5 \text{ V}; VCC = 15 \text{ V}; VEE = -15 \text{ V}; V_{REF} = 5 \text{ V}; all specifications } T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Table 2.

Parameter	Conditions	Min	Тур	Max	Unit
RESOLUTION		18			Bits
ANALOG INPUT ¹					
Differential Voltage Range					
0 to 5V	V _{IN+} - V _{IN-}	-V _{REF}		V_{REF}	
0 to 10V	V _{IN+} - V _{IN-}	-2V _{REF}		$2V_{\text{REF}}$	
±5V	V _{IN+} - V _{IN-}	-2V _{REF}		$2V_{\text{REF}}$	
±10V	V _{IN+} - V _{IN-}	-4V _{REF}		$4V_{REF}$	
Operating Input Voltage Range					
0 to 5V	(V _{IN+} , V _{IN} -) to AGND	-0.1V		$V_{\text{REF}} + 0.1V$	
0 to 10V	(V _{IN+} , V _{IN} -) to AGND	-0.1V		$2V_{REF} + 0.1V$	
±5V	(V _{IN+} , V _{IN-}) to AGND	-V _{REF} - 0.1V		$V_{\text{REF}} + 0.1V$	
±10V	(V _{IN+} , V _{IN-}) to AGND	-2V _{REF} - 0.1V		$2V_{REF} + 0.1V$	
Common Mode Voltage range					
0 to 5V	V _{IN+} , V _{IN-}	V _{REF} /2 - 0.1V	$V_{\text{REF}}/2$	$V_{REF}/2 + 0.1V$	
0 to 10V	$V_{IN+r}V_{IN-}$	$V_{REF} - 0.2V$	V_{REF}	$V_{\text{REF}} + 0.2V$	
Bipolar ranges	V_{IN+}, V_{IN-}	-0.1V	0	0.1V	
Analog Input CMRR	f _{IN} = 100 kHz		TBD		dB
Input Current	@ 670 kSPS throughput		TBD		μΑ
Input Current	@ 250 kSPS throughput		TBD		μA
Input Impedance					
THROUGHPUT SPEED					
Complete Cycle	AD7634 in Warp mode			1.49	μs
Throughput Rate	AD7634 in Warp mode	1		670	kSPS
Time between Conversions	AD7634 in Warp mode			1	ms
Complete Cycle	AD7634 in Normal mode			1.75	μs
Throughput Rate	AD7634 in Normal mode	0		570	kSPS
Complete Cycle	AD7634 in Impulse			2.22	μs
Throughput Rate	AD7634 in Impulse mode	0		450	kSPS
Complete Cycle	AD7631			4	μs
Throughput Rate	AD7631	0		250	kSPS
DC ACCURACY					
Integral Linearity Error ²	$V_{REF} = 5V$, PDREF = PDBUF = High		±1.75		LSB ³
No Missing Codes		18			Bits
Differential Linearity Error		-1		+2	LSB
Transition Noise			0.75		LSB
Bipolar Offset Error			10		LSB
Bipolar Offset Error Temperature Drift			TBD		ppm/°C
Bipolar Full-Scale Error			±60		LSB
Bipolar Full-Scale Error Temperature Drift			TBD		ppm/°C
Power Supply Sensitivity	$AVDD = 5 V \pm 5\%$		TBD		LSB

Preliminary Technical Data

Parameter	Conditions	Min	Тур	Max	Unit
AC ACCURACY					
Dynamic Range	$V_{IN} = \pm 5V$, $f_{IN} = 2 \text{ kHz}$, -60dB		102.5		dB ⁴
Signal-to-Noise	$V_{IN} = \pm 5V$, $f_{IN} = 2 \text{ kHz}$		101		dB
Spurious-Free Dynamic Range	$V_{IN} = \pm 5V$, $f_{IN} = 2 \text{ kHz}$		122		dB
Total Harmonic Distortion	$V_{IN} = \pm 5V$, $f_{IN} = 2 \text{ kHz}$		-106		dB
Signal-to-(Noise + Distortion)	$V_{IN} = \pm 5V$, $f_{IN} = 2 \text{ kHz}$		100		dB
–3 dB Input Bandwidth			12		MHz
SAMPLING DYNAMICS					
Aperture Delay			1		ns
Aperture Jitter			5		ps rms
Transient Response	Full-scale step			115	ns
INTERNAL REFERENCE	PDREF = PDBUF = low				
Output Voltage	REF @ 25°C	4.985	5.000	5.015	V
Temperature Drift	−40°C to +85°C		±7		ppm/°C
Line Regulation	$AVDD = 5 V \pm 5\%$		±15		ppm/V
Turn-On Settling Time	$C_{REF} = 10 \mu F$		5		ms
REFERENCE BUFFER	PDREF = high				
REFBUFIN Input Voltage Range			2.5		V
EXTERNAL REFERENCE	PDREF = PDBUF = high				
Voltage Range	REF		5	AVDD+0.1	V
Current Drain	AD7634 @ 670 kSPS throughput		TBD		μA
Current Drain	AD7631 @ 250 kSPS throughput		TBD		μΑ
TEMPERATURE PIN					1.
Voltage Output	TEMP @ 25°C		TBD		mV
Temperature Sensitivity	12 6 25 2		1		mV/°C
Output Resistance			4		kΩ
DIGITAL INPUTS			-		
Logic Levels					
VIL		-0.3		+0.6	V
ViH		2.1		OVDD+0.3	v
I _{IL}		1 -1		+1	μΑ
I _{IH}		-1		+1	μΑ
DIGITAL OUTPUTS		<u> </u>			μ, τ
Data Format ⁵					
Pipeline Delay ⁶					
Vol	I _{SINK} = 500 μA			0.4	V
V _{OH}	$I_{SOURCE} = -500 \mu\text{A}$	OVDD - 0.6		0.1	V
POWER SUPPLIES	-Sounce Soo pri	0.00			•
Specified Performance					
AVDD		4.75	5	5.25	V
DVDD		4.75	5	5.25	V
OVDD		2.7	J	5.25	V
VCC		2.7	15	J. L J	V
		•	1.3		ı v

Parameter	Conditions	Min	Тур Мах	Unit
Operating Current ⁷	PDREF = PDBUF = low			
AVDD ⁸	AD7631 @ 250kSPS throughput		8.5	mA
	AD7634 @ 670kSPS throughput		21	mA
DVDD	AD7631 @ 250kSPS throughput		3.5	mA
	AD7634 @ 670kSPS throughput		7	mA
OVDD	AD7631 @ 250kSPS throughput		0.1	mA
	AD7634 @ 670kSPS throughput		0.2	mA
VCC	AD7631 @ 250kSPS throughput	1		mA
VEE	AD7631 @ 250kSPS throughput	0.6		mA
VCC	AD7634 @ 670kSPS throughput	2.8		mA
VEE	AD7634 @ 670kSPS throughput	D7634 @ 670kSPS throughput 2		mA
Power Dissipation				
With Internal Reference ⁷	AD7631 @ 250kSPS throughput		75	mW
With Internal Reference ⁷	AD7634 @ 670kSPS throughput		190	
Without Internal Reference	AD7631 @ 250kSPS throughput	62		mW
Without Internal Reference ⁷	AD7634 @ 670kSPS throughput	160		mW
In Power-Down Mode ⁹	PD = high		2	μW
TEMPERATURE RANGE ¹⁰				
Specified Performance	T _{MIN} to T _{MAX}	-40	+85	°C

¹ The inputs are differential anti-phase. Refer to the **Error! Reference source not found.** section.

² Linearity is tested using endnotes, not best fit.

³ LSB means least significant bit. With the 0 to 5V input range, 1 LSB 38.15µV.

⁴ All specifications in dB are referred to a full-scale input FSR. Tested with an input signal at 0.5 dB below full-scale, unless otherwise specified.

⁵ Parallel or serial 18-bit.

⁶ Conversion results are available immediately after completed conversion.

⁷ Tested in parallel reading mode.

8 With internal reference, PDREF and PDBUF are low; without internal reference, PDREF and PDBUF are high.

9 With all digital inputs forced to OVDD.

¹⁰Consult sales for extended temperature range.

TIMING SPECIFICATIONS

 $AVDD = DVDD = 5 \text{ V}; OVDD = 2.7 \text{ V} \text{ to } 5.5 \text{ V}; VCC = 15 \text{ V}; VEE = -15 \text{ V}; V_{REF} = 5 \text{ V}; all specifications } T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Table 3.

Parameter	Symbol	Min	Тур	Max	Unit
CONVERSION AND RESET					
Convert Pulse Width	t ₁	10			ns
Time Between Conversions (Warp Mode/Normal Mode ¹)	t ₂				ns
AD7631		4			μs
AD7634 (Warp Mode/Normal Mode/Impulse Mode) ²		1.49/1.75/2.22			μs
CNVST Low to BUSY High Delay	t ₃			35	ns
BUSY High All Modes (Except Master Serial Read After Convert)	t ₄				
AD7631				TBD	μs
AD7634 (Warp Mode/Normal Mode/Impulse Mode)				TBD	μs
Aperture Delay	t ₅		2		ns
End of Conversion to BUSY Low Delay	t ₆	10			ns
Conversion Time	t ₇				
AD7631				TBD	μs
AD7634 (Warp Mode/Normal Mode/Impulse Mode)				TBD	μs
Acquisition Time	t ₈				
AD7631		250			ns
AD7634 (Warp Mode/Normal Mode/Impulse Mode)		250			ns
RESET Pulse Width	t ₉	10			ns
PARALLEL INTERFACE MODES					
CNVST Low to DATA Valid Delay	t ₁₀				
AD7631				1.5	μs
AD7634 (Warp Mode/Normal Mode/Impulse Mode)				1/1.25/1.5	μs
DATA Valid to BUSY Low Delay	t ₁₁	12			ns
Bus Access Request to DATA Valid	t ₁₂			45	ns
Bus Relinquish Time	t ₁₃	5		15	ns
MASTER SERIAL INTERFACE MODES ³					
CS Low to SYNC Valid Delay	t ₁₄			10	ns
CS Low to Internal SCLK Valid Delay	t ₁₅			10	ns
CS Low to SDOUT Delay	t ₁₆			10	ns
CNVST Low to SYNC Delay	t ₁₇				
AD7631	(1)		525		ns
AD7634 (Warp Mode/Normal Mode/Impulse Mode)			25/275/525		ns
SYNC Asserted to SCLK First Edge Delay	t ₁₈	3	23, 2, 3, 323		ns
Internal SCLK Period ⁴	t ₁₉	25		40	ns
Internal SCLK High ⁴	t ₂₀	12		10	ns
Internal SCLK Low ⁴	t ₂₁	7			ns
SDOUT Valid Setup Time ⁴	t ₂₂	4			ns
SDOUT Valid Hold Time ⁴	t ₂₃	2			ns
SCLK Last Edge to SYNC Delay ⁴	t ₂₄	3			ns
CS High to SYNC HI-Z	t ₂₅] _		10	ns
CS High to Internal SCLK HI-Z				10	
CS High to SDOUT HI-Z	t ₂₆				ns
C3 Filgit to 3DOOT FII-Z	t ₂₇	l		10	ns

Parameter	Symbol	Min	Тур	Max	Unit
			See		
BUSY High in Master Serial Read after Convert ⁴	t ₂₈		Table 4		
CNVST Low to SYNC Asserted Delay (all Modes)	t ₂₉				ns
AD7631			TBD		ns
AD7634 (Warp Mode/Normal Mode/Impulse Mode)			TBD		ns
SYNC Deasserted to BUSY Low Delay	t ₃₀		25		ns
SLAVE SERIAL INTERFACE MODES					
External SCLK Setup Time	t ₃₁	5			ns
External SCLK Active Edge to SDOUT Delay	t ₃₂	1		8	ns
SDIN Setup Time	t ₃₃	5			ns
SDIN Hold Time	t ₃₄	5			ns
External SCLK Period	t ₃₅	12.5			ns
External SCLK High	t ₃₆	5			ns
External SCLK Low	t ₃₇	5			ns

¹ In warp mode only, the maximum time between conversions is 1 ms; otherwise, there is no required maximum time.

Table 4. Serial Clock Timings in Master Read After Convert Mode

DIVSCLK[1]		0	0	1	1	
DIVSCLK[0]	Symbol	0	1	0	1	Unit
SYNC to SCLK First Edge Delay Minimum	t ₁₈	3	17	17	17	ns
Internal SCLK Period Minimum	t ₁₉	25	60	120	240	ns
Internal SCLK Period Maximum	t ₁₉	40	80	160	320	ns
Internal SCLK High Minimum	t ₂₀	12	22	50	100	ns
Internal SCLK Low Minimum	t ₂₁	7	21	49	99	ns
SDOUT Valid Setup Time Minimum	t ₂₂	4	18	18	18	ns
SDOUT Valid Hold Time Minimum	t ₂₃	2	4	30	89	ns
SCLK Last Edge to SYNC Delay Minimum	t ₂₄	3	60	140	300	ns
BUSY High Width Maximum (Warp mode)	t ₂₈	1.75	2.5	4	7	μs
BUSY High Width Maximum (Normal mode)	t ₂₈	2	2.75	4.25	7.25	μs
BUSY High Width Maximum (Impulse mode)	t ₂₈	2.25	3	4.5	7.5	μs

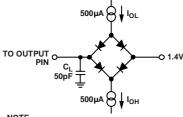
 $^{^{2}}$ In warp mode only, the time between conversions is 1 ms; otherwise, there is no required maximum time.

³ In serial interface modes, the SYNC, SCLK, and SDOUT timings are defined with a maximum load C₁ of 10 pF; otherwise, the load is 60 pF maximum.

⁴ In serial master read during convert mode. See **Error! Reference source not found.** for serial master read after convert mode timing specifications.

ABSOLUTE MAXIMUM RATINGS

Table 5.


Table 5.	
Parameter	Rating
Analog Inputs/Outputs	
IN+, IN-, REF, REFBUFIN, TEMP,	AVDD + 0.3 V to
INGND, REFGND to AGND	AGND – 0.3 V
Ground Voltage Differences	
AGND, DGND, OGND	±0.3 V
Supply Voltages	
AVDD, DVDD	-0.3 V to +2.7 V
OVDD	-0.3 V to +3.8 V
AVDD to DVDD	±2.8 V
AVDD, DVDD to OVDD	-3.8 V to +2.8 V
Digital Inputs	-0.3 V to +5.5 V
PDREF, PDBUF	±20 mA
Internal Power Dissipation ¹	700 mW
Internal Power Dissipation ²	2.5 W
Junction Temperature	125°C
Storage Temperature Range	−65°C to +125°C
	•

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

NOTE
IN SERIAL INTERFACE MODES, THE SYNC, SCLK, AND
SDOUT TIMING ARE DEFINED WITH A MAXIMUM LOAD
C_L OF 10pF; OTHERWISE, THE LOAD IS 60pF MAXIMUM.

Figure 2. Load Circuit for Digital Interface Timing, SDOUT, SYNC, and SCLK Outputs, $C_L = 10 \text{ pF}$

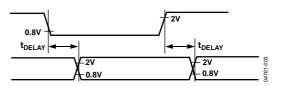


Figure 3. Voltage Reference Levels for Timing

^{1.} Specification is for the device in free air: 48-Lead LQFP; $\theta_{JA} = 91^{\circ}\text{C/W}$, $\theta_{JC} = 30^{\circ}\text{C/W}$.

^{2.} Specification is for the device in free air: 48-Lead LFCSP; $\theta_{JA} = 26^{\circ}\text{C/W}$.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

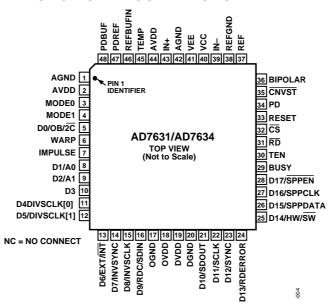


Figure 4. Pin Configuration

Table 6. Pin Function Descriptions

Pin	o. Fin Function								
No.	Mnemonic	Type ¹	Description						
1, 42	AGND	Р	Analog Power Ground Pi	Analog Power Ground Pin.					
2, 44	AVDD	Р	Input Analog Power Pins	. Nominally 5 V.					
3, 4	MODE[0:1]	DI	Data Output Interface Me	ode Selection.					
			Interface MODE#	MODE1	MODE0	Description			
			0	0	0	18-bit interface			
			1	0	1	16-bit interface			
			2	1	0	8-bit (byte) interface			
			3	1	1	Serial interface			
5	D0/OB/2C	DI/O	When MODE[1:0] = 0 (18-bit interface mode), this pin is Bit 0 of the parallel port data output bus and the data coding is straight binary. In all other modes, this pin allows the choice of straight binary/twos complement. When $OB/\overline{^{2C}}$ is high, the digital output is straight binary; when low, the MSB is inverted resulting in a twos complement output from its internal shift register.						
6	WARP	DI	AD7634: Conversion Mode Selection. When WARP = high and IMPULSE = low, this selects warp mode In this mode, the maximum throughput is achievable, and a minimum conversion rate must be applied to guarantee full specified accuracy.						
			When WARP = low and IN independent of the mini AD7631: Connect to DGN	mum conversion rate		e where full accuracy is maintained			
7	IMPULSE	DI	AD7631: Connect to DGND. AD7634: Conversion Mode Selection. When IMPULSE = high and WARP = low, this input selects impulse mode, a reduced power mode. In this mode, the power dissipation is approximately scaled proportional to the sampling rate.						
			AD7631: Connect to DGN	ND.					
8	D1/A0	DI/O	When MODE[1:0] = 0, thi input pin controls the for			tput bus. In all other modes, this Table 7.			
9	D2/A1	DI/O	When $MODE[1:0] = 0$, thi	s pin is Bit 2 of the pa	rallel port data ou	tput bus.			
			When MODE[1:0] = 1 or 2	2, this input pin contr	ols the form in whi	ich data is output as shown in Table 7.			
10	D3	D0	When MODE[1:0] = 0, 1, o This pin is always an outp			arallel port data output bus.			

Pin			
No.	Mnemonic	Type ¹	Description
11, 12	D[4:5] or DIVSCLK[0:1]	DI/O	When MODE[1:0] = 0, 1, or 2, these pins are Bit 4 and Bit 5 of the parallel port data output bus. When MODE[1:0] = 3 (serial mode), serial clock division selection. When using serial master read after convert mode (EXT/ $\overline{\text{INT}}$ = low, RDC/SDIN = low), these inputs can be used to slow down the internally generated serial clock that clocks the data output. In other serial modes, these pins are high impedance outputs.
13	D6 or EXT/INT	DI/O	When MODE[1:0] = 0, 1, or 2, this output is used as Bit 6 of the parallel port data output bus. When MODE[1:0] = 3 (serial mode), serial clock source select. This input is used to select the internally generated (master) or external (slave) serial data clock. When EXT/INT = low, master mode. The internal serial clock is selected on SCLK output. When EXT/INT = high, slave mode. The output data is synchronized to an external clock signal, gated by CS, connected to the SCLK input.
14	D7 or INVSYNC	DI/O	When MODE[1:0] = 0, 1, or 2, this output is used as Bit 7 of the parallel port data output bus. When MODE[1:0] = 3 (serial mode), invert sync select. In serial master mode (EXT/INT = low), this input is used to select the active state of the SYNC signal. When INVSYNC = low, SYNC is active high. When INVSYNC = high, SYNC is active low.
15	D8 or INVSCLK	DI/O	When MODE[1:0] = 0, 1, or 2, this output is used as Bit 8 of the parallel port data output bus. When MODE[1:0] = 3, invert SCLK select. In all serial modes, this input is used to invert the SCLK signal.
16	D9 or RDC	DI/O	When MODE[1:0] = 0, 1, or 2, this output is used as bit 9 of the parallel port data output bus. When MODE[1:0] = 3 (serial mode), read during convert. When using serial master mode (EXT/INT = low), RDC is used to select the read mode. When RDC = high, the previous conversion result is output on SDOUT during conversion and
			the period of SCLK changes. When RDC = low (read after convert), the current result can be output on SDOUT only when the conversion is complete.
	or SDIN		When MODE[1:0] = 3 (serial mode), serial data in. When using serial slave mode, (EXT/\overline{INT} = high), SDIN could be used as a data input to daisy-chain the conversion results from two or more ADCs onto a single SDOUT line. The digital data level on SDIN is output on SDOUT with a delay of 18 SCLK periods after the initiation of the read sequence.
17	OGND	Р	Input/Output Interface Digital Power Ground.
18	OVDD	Р	Input/Output Interface Digital Power. Nominally at the same supply as the supply of the host interface (2.7 V to 5V).
19	DVDD	Р	Digital Power. Nominally at 5 V.
20	DGND	Р	Digital Power Ground.
21	D10 or SDOUT	DO	When MODE[1:0] = 0, 1, or 2, this output is used as Bit 10 of the parallel port data output bus. When MODE[1:0] = 3 (serial mode), serial data output. In serial mode, this pin is used as the serial data output synchronized to SCLK. Conversion results are stored in an on-chip register. The ADC provides the conversion result, MSB first, from its internal shift register. The data format is determined by the logic level of OB/ $\overline{\text{2C}}$.
			In master mode, EXT/INT = low. SDOUT is valid on both edges of SCLK. In slave mode, EXT/INT = high: When INVSCLK = low, SDOUT is updated on SCLK rising edge and valid on the next falling edge. When INVSCLK = high, SDOUT is updated on SCLK falling edge and valid on the next rising edge.
22	D11 or SCLK	DI/O	When MODE[1:0] = 0, 1, or 2, this output is used as Bit 11 of the parallel port data output bus. When MODE[1:0] = 3 (serial mode), serial clock. In all serial modes, this <u>pin</u> is used as the serial data clock input or output, depending upon the logic state of the EXT/INT pin. The active edge where the data SDOUT is updated depends on the logic state of the INVSCLK pin.
23	D12 or SYNC	DO	When MODE[1:0] = 0, 1, or 2, this output is used as Bit 12 of the parallel port data output bus. When MODE[1:0] = 3 (serial mode), frame synchronization. In serial master mode (EXT/INT= low), this output is used as a digital output frame synchronization for use with the internal data clock.

Preliminary Technical Data

Pin No.	Mnemonic	Type ¹	Description
			When a read sequence is initiated and INVSYNC = low, SYNC is driven high and remains high while SDOUT output is valid.
			When a read sequence is initiated and INVSYNC = high, SYNC is driven low and remains low while SDOUT output is valid.
24	D13 or RDERROR	DO	When MODE[1:0] = 0, 1, or 2, this output is used as Bit 13 of the parallel port data output bus. When MODE[1:0] = 3 (serial mode), read error. In serial slave mode (EXT/INT = high), this output is used as an incomplete read error flag. If a data read is started and not completed when the
25	D14	DI/O	current conversion is complete, the current data is lost and RDERROR is pulsed high. When MODE[1:0] = 0, 1, or 2, this output is used as Bit 14 of the parallel port data output bus.
23	or HW/SW	DI/O	When MODE[1:0] = 3 (serial mode) hardware/software select. This input, part of the serial programmable port, is used to select hardware or software input ranges and mode selection.
26	D15	DI/O	When MODE[1:0] = 0, 1, or 2, this output is used as Bit 15 of the parallel port data output bus.
	or SPPDATA		When MODE[1:0] = 3 (serial mode), serial programmable port data. This input is used to write in the serial programmable port data when $HW/\overline{SW} = Iow$.
27	D16	DI/O	When MODE[1:0] = 0, 1, or 2, this output is used as Bit 16 of the parallel port data output bus.
	or SPPCLK		When MODE[1:0] = 3 (serial mode), serial programmable port clock. This input is used to clock in the data on SPPDATA. The active edge where the data SPPDATA is updated depends on the logic state of the INVSCLK pin.
28	D17	DI/O	When $MODE[1:0] = 0$, 1, or 2, this output is used as Bit 17 of the parallel port data output bus.
	or SPPEN		When MODE[1:0] = 3 (serial mode), serial programmable port enable. Asserting this input enables the serial programmable port.
29	BUSY	DO	Busy Output. Transitions high when a conversion is started and remains high until the conversion is complete and the data is latched into the on-chip shift register. The falling edge of BUSY can be used as a data-ready clock signal.
30	TEN	DI	10 Volt Input Range. Refer to Table 8.
			When $MODE[1:0] = 0$, 1, or 2, this input is used to select the 10V input range.
			When MODE[1:0] = 3 (serial mode), and
			HW/SW = high, driving TEN high selects the 10 Volt input range.
			HW/ SW = low, the input range is programmed with the serial programmable port and this pin is a don't care.
31	RD	DI	Read Data. When CS and RD are both low, the interface parallel or serial output bus is enabled.
32	CS	DI	Chip Select. When \overline{CS} and \overline{RD} are both low, the interface parallel or serial output bus is enabled. \overline{CS} is also used to gate the external clock in slave serial mode.
33	RESET	DI	Reset Input. When high, resets the ADC. Current conversion, if any, is aborted. Falling edge of RESET enables the calibration mode indicated by pulsing BUSY high. If not used, this pin can be tied to DGND.
34	PD	DI	Power-Down Input. When high, power downs the ADC. Power consumption is reduced and conversions are inhibited after the current one is completed.
35	CNVST	DI	Conversion Start. A falling edge on CNVST puts the internal sample-and-hold into the hold state and initiates a conversion.
36	BIP	DI	Bipolar Input Range. Refer to Table 8.
			When $MODE[1:0] = 0$, 1, or 2, this input is used to select the bipolar input range.
			When MODE[1:0] = 3 (serial mode), and
			HW/ SW = high, driving BIP high selects the bipolar input range.
			HW/SW = low, the input range is programmed with the serial programmable port and this pin is a don't care.
37	REF	AI/O	Reference Output/Input.
			When PDREF/PDBUF = low, the internal reference and buffer are enabled producing 5 V on this pin. When PDREF/PDBUF = high, the internal reference and buffer are disabled allowing an externally supplied voltage reference up to AVDD volts. Decoupling is required with or without the internal reference and buffer.

Pin				
No.	Mnemonic	Type ¹	Description	
38	REFGND	Al	Reference Input Analog Ground.	
39	IN-	Al	oifferential Negative Analog Input; referenced to IN+.	
40	Vcc	Р	High Voltage Positive Supply.	
41	V _{EE}	Р	High Voltage Negative Supply.	
43	IN+	Al	Differential Positive Analog Input; referenced to IN	
45	TEMP	AO	Temperature Sensor Analog Output.	
46	REFBUFIN	AI/O	Reference Buffer Input.	
			When using an external reference with the internal buffer (PDBUF = low, PDREF = high), applying 2.5V on this pin produces 5V on the REF pin.	
			When using the internal reference (PDBUF = PDREF = low), this pin should not be connected.	
47	PDREF	DI	Internal Reference Power-Down Input.	
			When low, the internal reference is enabled (PDBUF also needs to be low).	
			When high, the internal reference is powered down and an external reference must been used.	
48	PDBUF	DI	Internal Reference Buffer Power-Down Input.	
			When low, the buffer is enabled (PDREF also needs to be low).	
			When high, the buffer is powered-down and an external reference must be used.	

¹ Al = analog input; Al/O = bidirectional analog; AO = analog output; DI = digital input; DI/O = bidirectional digital; DO = digital output; P = power.

Table 7. Data Bus Interface Definition

MODE	MODE1	MODE0	D0/OB/2C	D1/A0	D2/A1	D[3]	D[4:9]	D[10:11]	D[12:15]	D[16:17]	Description
0	0	0	R[0]	R[1]	R[2]	R[3]	R[4:9]	R[10:11]	R[12:15]	R[16:17]	18-Bit Parallel
1	0	1	OB/2C	A0 = 0	R[2]	R[3]	R[4:9]	R[10:11]	R[12:15]	R[16:17]	16-Bit High Word
1	0	1	OB/2C	A0 = 1	R[0]	R[1]	R[1] All Zeros			16-Bit Low Word	
2	1	0	OB/2C	A0 = 0	A1 = 0	All	Hi-Z	R[10:11]	R[12:15]	R[16:17]	8-Bit High Byte
2	1	0	OB/2C	A0 = 0	A1 = 1	All	Hi-Z	R[2:3]	R[4:7]	R[8:9]	8-Bit Mid Byte
2	1	0	OB/2C	A0 = 1	A1 = 0	All	Hi-Z	R[0:1]	All Z	Zeros	8-Bit Low Byte
2	1	0	OB/2C	A0 = 1	A1 = 1	All	Hi-Z	All Z	Zeros	R[0:1]	8-Bit Low Byte
3	1	1	OB/2C		All Hi-Z	Serial Interface			Serial Interface		

Table 8. Input Range Selection. Parallel Mode and Serial Hardware Mode

Range	ВІР	TEN	HW/SW (serial mode)
0 - 5V	Low	Low	High
0 - 10V	Low	High	High
±5V	High	Low	High
±10V	High	High	High
All Ranges ¹	Х	Х	Low

 $^{^{1}}$ In serial mode (MODE[1:0] = 3) when HW/ $\overline{\text{SW}}$ = low, the input ranges are defined by registers.

TERMINOLOGY

Integral Nonlinearity Error (INL)

Linearity error refers to the deviation of each individual code from a line drawn from negative full scale through positive full scale. The point used as negative full scale occurs ½ LSB before the first code transition. Positive full scale is defined as a level 1½ LSB beyond the last code transition. The deviation is measured from the middle of each code to the true straight line.

Differential Nonlinearity Error (DNL)

In an ideal ADC, code transitions are 1 LSB apart. Differential nonlinearity is the maximum deviation from this ideal value. It is often specified in terms of resolution for which no missing codes are guaranteed.

Gain Error

The first transition (from 000...00 to 000...01) should occur for an analog voltage ½ LSB above the nominal negative full scale (19.073486 V for the 0 to 5V range). The last transition (from 111...10 to 111...11) should occur for an analog voltage 1½ LSB below the nominal full scale (+4.999943 V for the 0 to 5V V range). The gain error is the deviation of the difference between the actual level of the last transition and the actual level of the first transition from the difference between the ideal levels.

Zero Error

The zero error is the difference between the ideal midscale input voltage (0 V) and the actual voltage producing the midscale output code.

Dynamic Range

It is the ratio of the rms value of the full scale to the rms noise measured with the inputs shorted together. The value for dynamic range is expressed in decibels.

Signal-to-Noise Ratio (SNR)

SNR is the ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist frequency, excluding harmonics and dc. The value for SNR is expressed in decibels.

Total Harmonic Distortion (THD)

THD is the ratio of the rms sum of the first five harmonic components to the rms value of a full-scale input signal and is expressed in decibels.

Signal to (Noise + Distortion) Ratio (SINAD)

SINAD is the ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is expressed in decibels.

Spurious-Free Dynamic Range (SFDR)

The difference, in decibels (dB), between the rms amplitude of the input signal and the peak spurious signal.

Effective Number of Bits (ENOB)

ENOB is a measurement of the resolution with a sine wave input. It is related to SINAD and is expressed in bits by

$$ENOB = [(SINAD_{dB} - 1.76)/6.02]$$

Aperture Delay

Aperture delay is a measure of the acquisition performance and is measured from the falling edge of the CNVST input to when the input signal is held for a conversion.

Transient Response

The time required for the AD7641 to achieve its rated accuracy after a full-scale step function is applied to its input.

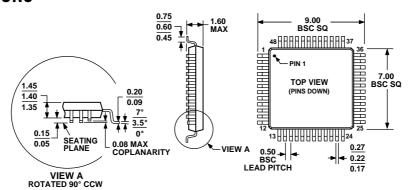
Reference Voltage Temperature Coefficient

It is derived from the typical shift of output voltage at 25°C on a sample of parts maximum and minimum reference output voltage (V_{REF}) measured at T_{MIN} , $T(25^{\circ}C)$, and T_{MAX} . It is expressed in ppm/°C using

$$TCV_{REF} (\text{ppm/°C}) = \frac{V_{REF} (Max) - V_{REF} (Min)}{V_{REF} (25^{\circ}\text{C}) \times (T_{MAX} - T_{MIN})} \times 10^{6}$$

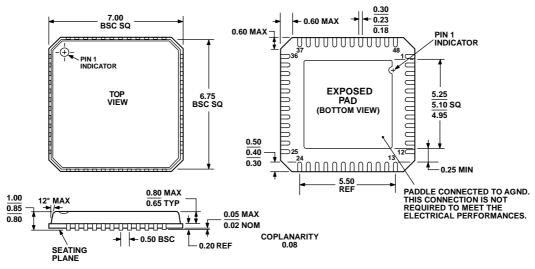
where:

 V_{REF} (Max) = Maximum V_{REF} at T_{MIN} , $T(25^{\circ}C)$, or T_{MAX}


 V_{REF} (Min) = Minimum V_{REF} at T_{MIN} , $T(25^{\circ}C)$, or T_{MAX}

 V_{REF} (25°C) = V_{REF} at 25°C

 $T_{MAX} = +85$ °C


 $T_{MIN} = -40$ °C

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-026-BBC

Figure 5. 48-Lead Low Profile Quad Flat Package [LQFP] (ST-48) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2

Figure 6. 48-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 7 mm × 7 mm Body, Very Thin Quad (CP-48-1) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option			
AD7641BCPZ ¹	-40°C to +85°C	48-Lead Lead Frame Chip Scale Package (LFCSP_VQ)	CP-48-1			
AD7641BCPZRL ¹	-40°C to +85°C	48-Lead Lead Frame Chip Scale Package (LFCSP_VQ)	CP-48-1			
AD7641BSTZ ¹	-40°C to +85°C	48-Lead Low Profile Quad Flat Package (LQFP)	ST-48			
AD7641BSTZRL ¹	-40°C to +85°C	48-Lead Low Profile Quad Flat Package (LQFP)	ST-48			
EVAL-AD7641CB ²		Evaluation Board				
EVAL-CONTROLBRD3 ³		Controller Board				

¹ Z = Pb-free part

³ This board allows a PC to control and communicate with all Analog Devices, Inc. evaluation boards ending in the CB designators.

² This board can be used as a standalone evaluation board or in conjunction with the EVAL-CONTROL BRD3 for evaluation/demonstration purposes.